

ME 328: Medical Robotics Winter 2019

Lecture 1: Introduction to medical robotics

Allison Okamura
Stanford University

About this class

Teaching staff

Instructor: Allison Okamura
Co-instructor for seminars: Federico Barbagli
CAs: Lisa Yamada, Cole Simpson

- Who are you?
- Review course logistics

Web page Syllabus

To do

- Fill out the survey (handout)
- Sign up on piazza today:
 - https://piazza.com/stanford/winter2018/me328
- Enter your availability on this when2meet poll by tomorrow at 3 pm:
 - https://www.when2meet.com/?7393949-IDcQJ

Robots are...

- Accurate and precise; Untiring
- Smaller or larger than people (as needed)
- Remotely operated (as needed)
- Connected to computers, which gives them access to information

 Not always able to operate autonomously in highly complex, uncertain environments

Need for human interaction

Potential Impact of Medical Robotics

level of challenge

TODAY:

Treatments are both qualitatively and quantitatively limited by human abilities

WITH ROBOTICS:

More clinicians can perform more difficult (and even new) procedures; more patients can be rehabilitated

number of patients treated

Surgical robotics:

Giving the surgeon superhuman capabilities

Level of Human Input Varies

Oral

Manual

Cooperative manipulation

Teleoperation

Autonomous

STOPPED HERE

Open Surgery

Surgeon

Patient

Image source: www.physicianphotos.com

Minimally Invasive Surgery

Surgeon

Image source: www.womenssurgerygroup.com

Instrument/Camera

Patient

Teleoperated Robot-Assisted Minimally Invasive Surgery

Surgeon

Master Console

Information-Enhanced **RMIS**

Patient-Side Robot

Instrument/Camera

Patient

© 2012 Intuitive Surgical, Inc.

© 2008 Intuitive Surgical, Inc.

Integrating Images

Laparoscopic ultrasound integrated with the da Vinci surgical system

Russell Taylor and Gregory Hager (JHU)

Force Feedback for Manipulation

Graphical force feedback results in **lower peak forces**, **lower variability of forces**, and **fewer broken sutures** for untrained robot-assisted surgeons

Force Feedback for Exploration

In collaboration with D. D. Yuh of JHMI Cardiac Surgery and Li-Ming Su of JHMI Urology

The Sensing Challenge

stiffness differences are difficult to feel through a rigid contact

In collaboration with D.Yuh (JHMI Cardiac Surgery) and Li-Ming Su (JHMI Urology) stiffness graphical overlay

Modeling:

Improving training and planning (and paving the way for autonomous robotic procedures)

From Modeling to Simulation

Example Commercial Simulators

Laparoscopy

Endoscopy

Immersion Corp.

Modeling Factors

Developing mechanical models from images

In collaboration with K. Macura (JHMI Radiology and Radiological Sciences)

Effects of material properties, boundary constraints, and geometry

Modeling enables needle steering

Steering Performance

deformation

In collaboration with N. Cowan and G. Chirikjian (JHU ME), D. Song (JHMI Radiation Oncology), M. Choti (JHMI Surgery), and K. Goldberg (UC Berkeley)

Rehabilitation Robotics:

Replacing, training, or assisting to improve quality of life

Growing Healthcare Challenges

Regaining function & retaining independence

Caretaking for staying at home/aging-in-place Individualized learning and training for special needs

Millions suffer from isolation and depression .6M special ed students

3.5M children with ADHD

1 in 5 children is overweight

1M Parkinson's patients,

50,000 new/year

750,000 strokes/year in US alone

Vets with PTSD, TBI, amputations, etc. 6.2 to 7.5M people with mental retardation caregivers in-home and

in-institution

Socially Assistive Robotics

Problem: cost/population size and growth trends
Need: personalized medium to long-term care
Part of the solution: human-centered robotics to improve health outcomes

- Monitoring
- Coaching/training
- Motivation
- Companionship/socialization

Robots can be a "force multiplier" for caregivers, reducing health care costs and improving quality of life Maja Mataric (USC)

Movement Therapy and Assistance

- Over 25% of U.S. population has some functional physical limitation that affects normal living
- 6.5M people in the US have had a stroke (by 2050, cost projected to be \$2.2 Trillion)

Optimizing Movement Therapy

In collaboration with A. Bastian (KKI and JHU Neuroscience)

Neurally Controlled Prostheses

JHU Applied Physics Laboratory

Safety

Safety of **industrial robots** is ensured by keeping humans out of the workspace.

Medical robots come in contact with both patients and clinicians/caregivers.

Approaches include:

- Low force and speed
- Risk analysis (eliminate single points of failure)
- Fault tolerance (hardware and software)
- Fail safe design (system fails to a safe state)
- Redundant sensing

In an ideal world, medical robotics includes:

- Quantitive descriptions of patient state
- Use of models to plan intervention
- Design of devices, systems, and processes to connect information to action (= robotics)
- Incorporating human input in a natural way
- Goal: improve health and quality of life

But these are only the technical challenges...