

ME 328: Medical Robotics Winter 2019

Lecture 14: Prosthetics

Allison Okamura
Stanford University

Updates

Office hours by appointment

Project:

- Sign up for meeting with teaching team on March 4
- Supporting data due on Friday, Mar. I at 4 pm
- Peer review form to be posted

Tour Friday

- Intuitive Surgical Mar. I (meet on campus at 1:15, arrive at 2:00) https://tinyurl.com/IntuitiveSurgicalTour
- Drivers, look for an email with your destination assignment
- Drivers taking other people will be reimbursed by mileage

Types of Prostheses

prostheses

artificial devices that replace injured or diseased body parts

Ocular prosthesis

Visual prosthesis

Artificial kidney

Also: Craniofacial (hemifacial, auricular, nasal, dental), neck (larynx substitutes, trachea and upper esophageal replacements), internal organs (bladder, stomach, heart), etc.

limb prostheses

purposes range from cosmesis to function

reasons for amputation

- Trauma
- Burns
- Peripheral Vascular Disease
- Malignant Tumors
- Neurologic Conditions
- Infections
- Congenital Deformities

limb prostheses

Upper extremity:

- forequarter
- shoulder disarticulation
- transhumeral prosthesis
- elbow disarticulation
- transradial prosthesis
- wrist disarticulation
- full hand
- partial hand
- finger
- partial finger

Lower extremity:

- hip disarticulation
- transfemoral prosthesis
- knee disarticulation
- transtibial prosthesis
- Syme's amputation (through ankle joint)
- foot
- partial foot
- toe

PROSTHETICS LOWER EXTREMITY

BELOW KNEE

KNEE DISARTICULATION

ABOVE KNEE

HIP DISARTICULATION

Prosthesis Design and Control

components

types of prosthesis control

No control

Myoelectric

Cable operated (body powered)

Robotic

myoelectric prosthesis control:

- Electrodes pick up microvolts of electricity produced by contractions in the muscles of the residual limb.
- Signals are amplified and thereafter they activate the motor
- In operating a hand there may be two electrodes, one on extensor muscles and one of flexor muscles groups, for opening and closing the hand

robotic prosthesis control: peripheral invasive

robotic prosthesis control: targeted muscle reinnervation

Courtesy of The Rehabilitation Institute of Chicago and DEKA (http://www.youtube.com/watch?v=ddInW6sm7JE)

robotic prosthesis control: targeted muscle reinnervation

- Provides an organized afferent pathway
 - · Offers strong causal link between sensation and perception
 - Minimizes need for CNS plasticity
- Provides a **natural** afferent pathway
 - Near-normal thresholds for temperature, light touch, sharp/dull and pressure have been demonstrated
- Yet, there are many challenges and unknowns:
 - · Density and types of mechanoreceptors in reinnervated skin unknown
 - No evidence of kinesthetic sensing
 - Relevance to proprioception unclear
 - Sensation of fingerpads has not been reported
 - Relationship to reinnervated muscle unclear

robotic prosthesis control: brain implant

robotic prosthesis control: brain implant

https://www.youtube.com/watch?v=ZuATvhlcUU4

discussion:

what are additional design challenges and potential solutions?

Human Sensorimotor Control Considerations

Comparison to Teleoperation

motion and force signals

teleoperated robot

haptic device

user

Transradial Electric-Powered Prosthesis User Preferences

Rank Order of Priority	Item Name
	Fingers could bend
2	Thumb moved out to side
3	Required less visual attention to perform functions
4	Thumb could touch each finger individually
5	Could hold small objects better
6	Wrist rotated terminal device
7	Could hold large objects better
8	Could use it in vigorous activities
9	Wrist moved terminal device up and down
10	Middle joint of thumb could bend

^{*} D. J. Atkins, D. C, Y. Heard, and W. H. Donovan, "Epidemiologic overview of individuals with upper-limb loss and their reported research priorities," J. Prosthetics and Orthotics, vol. 8:1, pp. 2-11, 1996.

role of vision and proprioception

A. Synergy Hand Motions

Thumb Roll

B. Decoupled Hand Motions Spread

Grasp

Thumb Flex (Tactor 4)

Level 1

Level 2

Level 3

haptic feedback

Shear (e.g., rotating wheel)

discussion:

what are additional sensorimotor control challenges and potential solutions?

future of prosthetics:

- Solving problems of cost, power, weight
- Direct human sensorimotor control
- Autonomy (or partial autonomy)
- Other ideas?